An adaptive enrichment algorithm for advection-dominated problems
نویسندگان
چکیده
We are interested in developing a numerical framework well suited for advectiondiffusion problems when the advection part is dominant. In that case, given Dirichlet type boundary condition, it is well known that a boundary layer develops. In order to resolve correctly this layer, standard methods consist in increasing the mesh resolution and possibly increasing the formal accuracy of the numerical method. In this paper, we follow another path: we do not seek to increase the formal accuracy of the scheme but, by a careful choice of finite element, to lower the mesh resolution in the layer. Indeed the finite element representation we choose is locally the sum of a standard one plus an enrichment. This paper proposes such a method and with several numerical examples, we show the potential of this approach. In particular we show that the method is not very sensitive to the choice of the enrichment. Key-words: enrichment, adaptivity, stabilized finite elements, XFEM, boundary-layer ∗ Bacchus Team, INRIA Bordeaux Sud-Ouest, 351 cours de la libération, 33400 Talence, France † Institut de mathématiques de Bordeaux, Univ. Bordeaux, 351 cours de la liberation, 33400 Talence, France ha l-0 06 65 52 4, v er si on 1 2 Fe b 20 12 Un algorithme d’enrichissement adaptatif pour les problèmes où l’advection domine. Résumé : Nous nous intéressons à developper un cadre numérique adapté aux problems d’advection-diffusion lorsque l’advection est dominante. Dans ce cas, étant données des conditions au bord de type Dirichlet, il est connu qu’une couche limite se développe. Pour résoudre correctement cette couche, les méthodes standardes consistent à augmenter la résolution du maillage et éventuellement l’ordre formel de la méthode numérique. Dans ce papier, nous suivons une autre voie: nous ne cherchons pas à augmenter l’ordre formel du schéma, mais à baisser la résolution du maillage dans la couche limite par un choix judicieux des éléments finis utilisés. En effet, nous choisissons une représentation par éléments finis qui soit la somme d’une approximation classique plus une fonction d’enrichissement. Ce papier proposes une telle méthode et montre le potentiel de cette approche avec de nombreux exemples numériques. En particulier, nous montrons que cette méthode n’est pas trop sensible au choix de l’enrichissement. Mots-clés : enrichissement, adaptation, éléments finis stabilisés, XFEM, couche-limite ha l-0 06 65 52 4, v er si on 1 2 Fe b 20 12 Adaptive enrichment 3
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملSolving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm
This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملAn hr–adaptive discontinuous Galerkin method for advection–diffusion problems
We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre–processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection–diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed dis...
متن کاملAn Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set
Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012